BBAuthors: Chen, Yuanyuan; Advisor: -; Participants: Lv, Yisheng; Wang, Fei-Yue (2019)
Traffic data imputation is critical for both research and applications of intelligent transportation systems. To develop traffic data imputation models with high accuracy, traffic data must be large and diverse, which is costly. An alternative is to use synthetic traffic data, which is cheap and easy-access. In this paper, we propose a novel approach using parallel data and generative adversarial networks (GANs) to enhance traffic data imputation. Parallel data is a recently proposed method of using synthetic and real data for data mining and data-driven process, in which we apply GANs to generate synthetic traffic data. As it is difficult for the standard GAN algorithm to generate ti...