Filter by collection

Current filters:


Current filters:


Refine By:

Search Results

  • previous
  • 1
  • next
Results 1-3 of 3 (Search time: 0.001 seconds).
Item hits:
  • BB


  • Authors: Rahmati, M.;  Advisor: -;  Participants: Pohlmeier, A.; Abasiyan, S.M.A.; Weihermüller, L.; Vereecken, H. (2019)

  • The results revealed that T2 spectra provided a good proxy to determine the PSD, showing good agreement between the PSD from T2 spectra and that calculated from the water retention curve (WRC) (R2 > 0.78; RMSE <1.38 μm). The application of CH also increased the zeta potential of the soil to −18.5 mV, compared with −20 mV obtained for the reference soil. The WRC measurements revealed that AG decreased the available water content for plant use compared with the reference soil, whereas CH increased the available water in comparison to the reference soil. Considering the parameters of the van Genuchten model, the application of AG and CH mainly affected the parameter α, confirming the dominant changes in macropores. This finding was confirmed by NMRR relaxation spectra. Furthermore, the...

  • BB


  • Authors: Vereecken, H.;  Advisor: -;  Participants: Weihermüller, L.; Assouline, S.; Šimůnek, J.; Verhoef, A.; Herbst, M.; Archer, N. (2019)

  • . We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows that there is a large variety of approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few LSMs consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. To tackle these challenges and integrate current knowledge on soil processes affecting...

  • BB


  • Authors: Brogi, C.;  Advisor: -;  Participants: Huisman, J. A.; Herbst, M.; Weihermüller, L.; Klosterhalfen, A.; Montzka, C.; Reichenau, T. G.; Vereecken, H. (2020)

  • Soil hydraulic parameters were calculated using pedotransfer functions. Simulations of soil water content dynamics performed with the agroecosystem model AgroC were compared with soil water content measured at two locations, resulting in RMSE of 0.032 and of 0.056 cm3 cm−3, respectively. The AgroC model was then used to simulate the growth of sugar beet (Beta vulgaris L.), silage maize (Zea mays L.), potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), winter barley (Hordeum vulgare L.), and winter rapeseed (Brassica napus L.) in the 1‐ by 1‐km study area. It was found that the simulated leaf area index (LAI) was affected by the magnitude of simulated water stress, which was a function of both the crop type and soil characteristics. Simulated LAI was generally consist...

  • previous
  • 1
  • next