Filter by collection

Current filters:


Current filters:


Refine By:

Search Results

  • previous
  • 1
  • next
Results 1-2 of 2 (Search time: 0.001 seconds).
Item hits:
  • BB


  • Authors: Landl, M.;  Advisor: -;  Participants: Schnepf, A.; Uteau, D.; Peth, S.; Athmann, M.; Kautz, T.; Perkons, U.; Vereecken, H.; Vanderborght, J. (2019)

  • The model was calibrated against observed root length densities in both the bulk soil and biopores by optimizing root growth model input parameters. By implementing known interactions between root growth and soil penetration resistance into our model, we could simulate root systems whose response to biopores in the soil corresponded well to experimental observations described in the literature, such as increased total root length and increased rooting depth. For all considered soil physical (soil texture and bulk density) and environmental conditions (years of varying dryness), we found biopores to substantially mitigate transpiration deficits in times of drought by allowing roots to take up water from wetter and deeper soil layers. This was even the case when assuming reduced root ...

  • BB


  • Authors: Cai, C.;  Advisor: -;  Participants: Vanderborght, J.; Couvreur, V.; Mboh, C.M.; Vereecken, H. (2018)

  • These models were implemented in HYDRUS‐1D, and soil hydraulic parameters were optimized by inverse modeling using soil water content and potential measurements and observations of root distributions of winter wheat (Triticum aestivum L.) in horizontally installed rhizotubes. Soil moisture was equally well predicted by the three models, and the soil hydraulic parameters optimized by the models with compensation were comparable. The obtained RWU parameters of the Feddes–Jarvis model were consistent with data reported in the literature, although the pressure heads h3l and h3h for lower and higher transpirations rates, respectively, could not be uniquely identified. Response surfaces of the objective function showed that the root‐related parameters of the Couvreur model could be identi...

  • previous
  • 1
  • next