Filter by collection

Current filters:



Current filters:



Refine By:

Search Results

  • previous
  • 1
  • next
Results 1-2 of 2 (Search time: 0.001 seconds).
Item hits:
  • BB


  • Authors: Adawara, Samuel Ndaghiya;  Advisor: -;  Participants: Shallangwa, Gideon Adamu; Mamza, Paul Andrew; Abdulkadir, Ibrahim; Abdulkadir, Ibrahim (2022)

  • Dengue virus (DENV) infection is spreading rapidly, especially in the subtropical and tropical regions, placing a huge percentage of the global population at risk and causing repeated outbreaks. DENV protease inhibition has been suggested as a viable therapeutic strategy. Using a computer-aided design approach and the structure-based drug design approach, ten 1, 2, 4-oxadiazole derivatives were designed based on the lead template (34) from our prior study. The design involved the substitution at the phenyl pharmacophore of the lead with methylamine, hydroxyl, and methoxy groups. To compare the anti-DENV efficacy of the optimized designed compounds to the template and other DENV referenced inhibitors targeting the NS-5 protease (PDB ID: 5K5M), they were docked with the DENV NS-5 prot...

  • BB


  • Authors: Ejeh, Stephen;  Advisor: -;  Participants: Uzairu, Adamu; Shallangwa, Gideon Adamu; Abechi, Stephen E. (2021)

  • The model obtained by in-silico method have the following statistical records, coefficient of determination (r2) of 0.7704, cross-validation (q2LOO = 0.6914); external test set (r2(pred) = 0.7049) and Y-randomization assessment (cR2p = 0.7025). The results from the model were used to identify 12 new potential human HCV NS3/4A protease inhibitors, and it was observed that the identified molecule is well-fixed when docked with the receptor and was found to have the lowest binding energy of − 10.7, compared to approved direct-acting antiviral agents (Telaprevir, Simeprevir, and Voxilaprevir) with − 9.5, − 10.0, − 10.5 binding energy, respectively.

  • previous
  • 1
  • next