Filter by collection

Current filters:



Current filters:



Refine By:

Search Results

  • previous
  • 1
  • next
Results 1-2 of 2 (Search time: 0.001 seconds).
Item hits:
  • BB


  • Authors: Zhu, W.;  Advisor: -;  Participants: Li, H.; Qu, H.; Wang, Y.; Misselbrook, T.; Li, X.; Jiang, R. (2018)

  • The soil water storage (SWS) decreased significantly during the early stage of the maize growing season, especially in 2014. The root depth and crop height were 20 cm deeper and 100 cm higher, respectively, in 2014 than in 2013 at the early stage. These results suggest that in the early stage of the maize growing season, pre‐seeding SWS can alleviate crop water stress effectively via deep roots. Model simulation showed that the plow pan layer (at a depth of 20–40 cm), with high soil bulk density and a lower soil water retention curve, significantly reduced infiltration. High evapotranspiration and low precipitation result in a temporary dry layer during the early stage, highlighting the plow pan as the sensitive layer for water stress during the drought period. Effective management ...

  • BB


  • Authors: Rahmati, M.;  Advisor: -;  Participants: Groh, J.; Graf, A.; Pütz, T.; Vanderborght, J.; Vereecken, H. (2020)

  • All components of the water balance were determined from 2012 until 2018. Budyko analysis was used to characterize the hydrological status of the studied sites. Wavelet analysis was also applied to study the power spectrum of ETa, vegetation‐height‐adjusted reference evapotranspiration (ETcrop), and water stress index (WSI) defined as ETa/ETcrop, as well as SWC at three different depths and the coherence between SWC and ETa and WSI. The Budyko analysis showed that 2018 resulted in a shift of both locations towards more water‐limited conditions, although Rollesbroich remained an energy‐limited system. Based on the power spectrum analysis, the annual timescale is the dominant scale for the temporal variability of ETa, ETcrop, and SWC. The results also showed that increasing dryness at...

  • previous
  • 1
  • next