Filter by collection

Current filters:


Current filters:


Refine By:

Search Results

  • previous
  • 1
  • next
Results 1-2 of 2 (Search time: 0.029 seconds).
Item hits:
  • BB


  • Authors: Shao, M.;  Advisor: -;  Participants: Wang, Y.; Xia, Y.; Jia, X. (2018)

  • The Loess Plateau (LP) of China is a good representative area for critical zone (CZ) science studies. The LP is famous for its deep loess. In most areas, the thickness of the loess profile is deeper than 100 m, and two‐thirds of the area is arid and semiarid. With the Grain‐for‐Green project, the vegetation of the plateau has recovered gradually. However, with the increase in vegetative coverage, especially the planted vegetation, the water content of the soil profile has decreased and the soil is much drier. In this review, particular emphasis is paid to the dry conditions of deep soil, drought, regional restoration of vegetation, and effective management of soil moisture. We reviewed the progress of research on dried soil layers (DSLs) that resulted from soil drought in the past d...

  • BB


  • Authors: Zhu, W.;  Advisor: -;  Participants: Li, H.; Qu, H.; Wang, Y.; Misselbrook, T.; Li, X.; Jiang, R. (2018)

  • The soil water storage (SWS) decreased significantly during the early stage of the maize growing season, especially in 2014. The root depth and crop height were 20 cm deeper and 100 cm higher, respectively, in 2014 than in 2013 at the early stage. These results suggest that in the early stage of the maize growing season, pre‐seeding SWS can alleviate crop water stress effectively via deep roots. Model simulation showed that the plow pan layer (at a depth of 20–40 cm), with high soil bulk density and a lower soil water retention curve, significantly reduced infiltration. High evapotranspiration and low precipitation result in a temporary dry layer during the early stage, highlighting the plow pan as the sensitive layer for water stress during the drought period. Effective management ...

  • previous
  • 1
  • next