Thông tin tài liệu


Nhan đề : Metagraph-based Learning on Heterogeneous Graphs
Tác giả: Fang, Yuan
Người tham gia: Lin, Wenqing
W. Zheng, Vincent
Wu, Min
Shi, Jiaqi
Chang, Kevin Chen-Chuan
Li, Xiao-Li
Năm xuất bản : 2019
Nhà xuất bản : IEEE Xplore
Số tùng thư/báo cáo: Transactions on Knowledge and Data Engineering, (2019), pp 15
Tóm tắt : Data in the form of graphs are prevalent, ranging from biological and social networks to citation graphs and the Web. In particular, most real-world graphs are heterogeneous, containing objects of multiple types, which present new opportunities for many problems on graphs. Consider a typical proximity search problem on graphs, which boils down to measuring the proximity between two given nodes. Most earlier studies on homogeneous or bipartite graphs only measure a generic form of proximity, without accounting for different “semantic classes”—for instance, on a social network two users can be close for different reasons, such as being classmates or family members, which represent two distinct semantic classes. Learning these semantic classes are made possible on heterogeneous graphs through the concept of metagraphs. In this study, we identify metagraphs as a novel and effective means to characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity, and employ a learning-to-rank technique that automatically learns the right parameters to suit the desired semantic class. In terms of efficiency, we develop a symmetry-based matching algorithm to speed up the computation of metagraph instances. Empirically, extensive experiments reveal that our metagraph-based proximity substantially outperforms the best competitor by more than 10%, and our matching algorithm can reduce matching time by more than half. As a further generalization, we aim to derive a general node and edge representation for heterogeneous graphs, in order to support arbitrary machine learning tasks beyond proximity search. In particular, we propose the finer-grained anchored metagraph, which is capable of discriminating the roles of nodes within the same metagraph. Finally, further experiments on the general representation show that we can outperform the state of the art significantly and consistently across various machine learning tasks.
URI: http://tailieuso.tlu.edu.vn/handle/DHTL/9949
Nguồn trực tuyến: https://doi.org/10.1109/TKDE.2019.2922956
Trong bộ sưu tập: Tài liệu hỗ trợ nghiên cứu khoa học
XEM MÔ TẢ

11

XEM & TẢI

4

Danh sách tệp tin đính kèm:
Ảnh bìa
  • D9949.pdf
      Restricted Access
    • Dung lượng : 2,91 MB

    • Định dạng : Adobe PDF

  • Bạn đọc là cán bộ, giáo viên, sinh viên của Trường Đại học Thuỷ Lợi cần đăng nhập để Xem trực tuyến/Tải về



    Khi sử dụng tài liệu trong thư viện số bạn đọc phải tuân thủ đầy đủ luật bản quyền.