Browsing by Author Sadak, M.S.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
or enter first few letters:  
Showing results 1 to 3 of 3
  • BB


  • Authors: Sadak, M.S.;  Advisor: -;  Participants: - (2019)

  • Foliar application of AgNPs with different concentrations (20, 40, and 60 mg/l) improved the growth parameters of fenugreek plant (e.g., shoot length, number of leaves/plant, and shoot dry weight) and increased some biochemical aspects such as photosynthetic pigment (chlorophyll a, chlorophyll b, and carotenoids) and indole acetic acid (IAA) contents thus enhanced the yield quantity (number of pods/plant, number of seeds/pod, weight of seeds/plant, and seed index) and quality (carbohydrate%, protein%, phenolics, flavonoids, and tannins contents) of the yielded seeds as well as increasing antioxidant activity of the yielded seeds.

  • BB


  • Authors: Sadak, M.S.;  Advisor: -;  Participants: - (2019)

  • Salinity stress (6.25 dS/m) caused marked significant decreases in wheat plant growth parameters (shoot height, fresh, and dry weights of the shoot) accompanied by significant increases in lipid peroxidation, hydrogen peroxide contents, and lipoxygenase enzyme (LOX) activity. Osmoprotectant compounds such as glucose, sucrose, trehalose, total soluble sugars (TSS), free amino acids, and proline increased in wheat plants irrigated with saline water compared with unstressed control plant. On the other hand, Tre foliar treatments (10 mM and 50 mM) proved to be effective in enhancing growth parameters and more accumulation of the tested organic solutes of leaves (glucose, sucrose, trehalos...

  • BB


  • Authors: Sadak, M.S.;  Advisor: -;  Participants: El-Bassiouny, H.M.S.; Dawood, M.G. (2019)

  • Drought stress caused significant increases in some osmoprotectants as glucose, trehalose, TSS, free amino acids, and proline. Meanwhile, trehalose foliar treatment with different concentrations significantly decreases in free amino acids and proline contents. More accumulation of the tested organic solutes of leaves (glucose, sucrose, trehalose, TSS) of the trehalose-treated plant in both normal irrigated and drought-stressed quinoa plants as compared with the corresponding controls. Treating quinoa plants with trehalose resulted in significant decrease in lipid peroxidation, hydrogen peroxide contents, and LOX activity in normal irrigated and drought-stressed plants. These decreases...